Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
1.
Environ Geochem Health ; 46(4): 129, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483651

ABSTRACT

The issue of potentially toxic elements (PTEs) contamination of regional soil caused by mining activities and tailings accumulation has attracted wide attention all over the world. The East Qinling is one of the three main molybdenum mines in the world, and the concentration of PTEs such as Hg, Pb and Cu in the slag is high. Quantifying the amount of PTEs contamination in soil and identifying potential sources of contamination is vital for soil environmental management. In the present investigation, the pollution levels of 8 PTEs in the Qinling molybdenum tailings intensive area were quantitatively identified. Additionally, an integrated source-risk method was adopted for resource allocation and risk assessment based on the PMF model, the ecological risk, and the health risk assessment model. The mean concentrations of Cu, Ni, Pb, Cd, Cr, Zn, As, and Hg in the 80 topsoil samples ranged from 0.80 to 13.38 times the corresponding background values; notably high levels were observed for Pb and Hg. The source partitioning results showed that PTEs were mainly affected by four pollution sources: natural and agricultural sources, coal-burning sources, combined transport and mining industry sources, and mining and smelting sources. The health risk assessment results revealed that the risks of soil PTEs for adults are acceptable, while the risks for children exceeded the limit values. The obtained results will help policymakers to obtain the sources of PTEs of tailing ponds intensive area. Moreover, it provides priorities for the governance of subsequent pollution sources and ecological restoration.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Child , Adult , Humans , Soil , Metals, Heavy/toxicity , Metals, Heavy/analysis , Molybdenum/analysis , Lead/analysis , Ponds , Environmental Monitoring/methods , Soil Pollutants/toxicity , Soil Pollutants/analysis , Mercury/analysis , Risk Assessment , China
2.
Gene ; 911: 148333, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38431233

ABSTRACT

BACKGROUND: The elevated metastasis rate of uveal melanoma (UM) is intricately correlated with patient prognosis, significantly affecting the quality of life. S100 calcium-binding protein A4 (S100A4) has tumorigenic properties; therefore, the present study investigated the impact of S100A4 on UM cell proliferation, apoptosis, migration, and invasion using bioinformatics and in vitro experiments. METHODS: Bioinformatic analysis was used to screen S100A4 as a hub gene and predict its possible mechanism in UM cells, and the S100A4 silencing cell line was constructed. The impact of S100A4 silencing on the proliferative ability of UM cells was detected using the Cell Counting Kit-8 and colony formation assays. Annexin V-FITC/PI double fluorescence and Hoechst 33342 staining were used to observe the effects of apoptosis on UM cells. The effect of S100A4 silencing on the migratory and invasive capabilities of UM cells was assessed using wound healing and Transwell assays. Western blotting was used to detect the expression of related proteins. RESULTS: The present study found that S100A4 is a biomarker of UM, and its high expression is related to poor prognosis. After constructing the S100A4 silencing cell line, cell viability, clone number, proliferating cell nuclear antigen, X-linked inhibitor of apoptosis protein, and survivin expression were decreased in UM cells. The cell apoptosis rate and relative fluorescence intensity increased, accompanied by increased levels of Bax and caspase-3 and decreased levels of Bcl-2. Additionally, a decrease in the cell migration index and relative invasion rate was observed with increased E-cadherin expression and decreased N-cadherin and vimentin protein expression. CONCLUSION: S100A4 silencing can inhibit the proliferation, migration, and invasion and synchronously induces apoptosis in UM cells.


Subject(s)
Melanoma , S100 Proteins , Uveal Neoplasms , Humans , Apoptosis/genetics , Carcinogenesis , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Melanoma/genetics , Melanoma/pathology , Quality of Life , S100 Calcium-Binding Protein A4/genetics , S100 Proteins/genetics , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology
3.
Neuroscience ; 545: 158-170, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38513765

ABSTRACT

Thioredoxin-reductase 2 (Txnrd2) belongs to the thioredoxin-reductase family of selenoproteins and is a key antioxidant enzyme in mammalian cells to regulate redox homeostasis. Here, we reported that Txnrd2 exerted a major influence in brain damage caused by Intracerebral hemorrhage (ICH) by suppressing endoplasmic reticulum (ER) stress oxidative stress and via Trx2/Prx3 pathway. Furthermore, we demonstrated that pharmacological selenium (Se) rescued the brain damage after ICH by enhancing Txnrd2 expression. Primarily, expression and localization of Txnrd2, Trx2 and Prx3 were determined in collagenase IV-induced ICH model. Txnrd2 was then knocked down using siRNA interference in rats which were found to develop more severe encephaledema and neurological deficits. Mechanistically, we observed that loss of Txnrd2 leads to increased lipid peroxidation levels and ER stress protein expression in neurons and astrocytes. Additionally, it was revealed that Se effectively restored the expression of Txnrd2 in brain and inhibited both the activity of ER stress protein activity and the generation of reactive oxygen species (ROS) by promoting Trx2/Prx3 kilter when administrating sodium selenite in lateral ventricle. This study shed light on the effect of Txnrd2 in regulating oxidative stress and ER stress via Trx2/Prx3 pathway upon ICH and its promising potential as an ICH therapeutic target.


Subject(s)
Cerebral Hemorrhage , Endoplasmic Reticulum Stress , Oxidative Stress , Rats, Sprague-Dawley , Thioredoxin Reductase 2 , Thioredoxins , Animals , Oxidative Stress/drug effects , Oxidative Stress/physiology , Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum Stress/drug effects , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Thioredoxins/metabolism , Male , Thioredoxin Reductase 2/metabolism , Brain Injuries/metabolism , Signal Transduction/physiology , Signal Transduction/drug effects , Reactive Oxygen Species/metabolism , Neurons/metabolism , Neurons/drug effects , Neurons/pathology , Disease Models, Animal , Peroxiredoxin III/metabolism , Brain/metabolism , Brain/drug effects , Brain/pathology , Rats , Selenium/pharmacology , Astrocytes/metabolism , Astrocytes/drug effects
4.
Front Physiol ; 14: 1233341, 2023.
Article in English | MEDLINE | ID: mdl-37900945

ABSTRACT

As an important technique for data pre-processing, outlier detection plays a crucial role in various real applications and has gained substantial attention, especially in medical fields. Despite the importance of outlier detection, many existing methods are vulnerable to the distribution of outliers and require prior knowledge, such as the outlier proportion. To address this problem to some extent, this article proposes an adaptive mini-minimum spanning tree-based outlier detection (MMOD) method, which utilizes a novel distance measure by scaling the Euclidean distance. For datasets containing different densities and taking on different shapes, our method can identify outliers without prior knowledge of outlier percentages. The results on both real-world medical data corpora and intuitive synthetic datasets demonstrate the effectiveness of the proposed method compared to state-of-the-art methods.

5.
Front Immunol ; 14: 1267772, 2023.
Article in English | MEDLINE | ID: mdl-37868973

ABSTRACT

Background: Apoptosis regulates normal development, homeostasis, immune tolerance and response to environmental stress by eliminating unwanted or diseased cells, and plays a key role in non-specific immunity of invertebrates. The exogenous pathway mediated by death receptors and death ligands is a very important pathway for cell apoptosis. Death ligands are mainly members of the tumour necrosis factor (TNF) family, of which FasL is an important member. The deep involvement of FasL in vertebrates cell apoptosis and immunity has been reported many times, but there is limited research on the FasL gene in shellfish, and its functional importance in oyster cell apoptosis and immunity remains unclear. Methods: The full length of ChFasL was identified and cloned based on the genome of Crassostrea hongkongensis. Quantitative PCR was used to detect the relative expression of ChFasL in different developmental stages and tissues, as well as the changes of relative expression in hemocytes after bacterial infection. The expression position of ChFasL in HEK293T cells was also located by subcellular localization, and the effect of increased recombinant protein content on the activity of reporter genes p53 and p21 was studied by dual-fluorescence reporter gene. Finally, the changes of apoptosis rate in hemocytes after ChFasL silencing was identified by RNA interference technology. Results: We identified a novel FasL gene from C. hongkongensis and named it ChFasL. We found that ChFasL has potential N-linked glycosylation site, a transmembrane domain and a TNF region, which was a typical characteristics of TNF family. ChFasL was expressed in all developmental stages of larvae and in all tissues of oysters. After stimulation by V. alginolyticus or S. haemolyticus, its relative expression in hemocytes increased significantly, suggesting that ChFasL was deeply engaged in the immune response process of C. hongkongensis to external microbial stimulation. The results of subcellular localization showed that ChFasL was mainly distributed in the cytoplasm of HEK293T cells. With the overexpression of the recombinant protein pcDNA3 1- ChFasL, the activity of p53 and p21 significantly increased, showing a positive regulatory effect. Moreover, after dsRNA successfully reduced the relative expression of ChFasL, the apoptosis rate of hemocytes was significantly lower than that the dsGFP group. Conclusion: These results comprehensively confirmed the important role of ChFasL in the apoptosis process of C. hongkongensis, which provided the basis and premise for the in-depth understanding of the immune function of apoptosis in molluscs, and also contributed to the research on the pathogenic death mechanism and disease resistance breeding of marine bivalves.


Subject(s)
Crassostrea , Humans , Animals , Base Sequence , Amino Acid Sequence , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Crassostrea/metabolism , Tumor Suppressor Protein p53/genetics , HEK293 Cells , Cloning, Molecular , Tumor Necrosis Factors/metabolism , Recombinant Proteins/genetics , Apoptosis/genetics
6.
Int J Nanomedicine ; 18: 3325-3338, 2023.
Article in English | MEDLINE | ID: mdl-37361386

ABSTRACT

Purpose: Due to its competitive advantages such as small size, high stability, easy production, and good tissue penetration compared with monoclonal antibodies (mAb), nanobodies (Nbs) were considered the next generation of therapeutics. However, the absence of Fc fragments and Fc-triggered immune effectors limits their clinical applications. In order to overcome these limitations, we develop a novel approach by attaching an IgG binding domain (IgBD) to Nbs for recruiting endogenous IgG and recovering the immune effectors for tumor killing. Material and Methods: We linked a Streptococcal Protein G-derived IgBD, termed C3Fab, at the C-terminus of a CD70-specific Nb 3B6 to construct an endogenous IgG recruitment antibody (termed EIR). The recombinant Nb3B6-C3Fab was expressed in E. coli BL21 (DE3) and purified by nickel affinity chromatography. We further evaluated the binding, recruitment of IgG, and the serum half-life of Nb3B6-C3Fab. The tumor-killing effects on CD70 positive cells mediated by antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity were also detected. Results: We successfully constructed a IgBD fused Nb3B6-C3Fab with high affinity for CD70 and mouse IgG (mIgG). Nb3B6-C3Fab can specifically bind to CD70 positive tumor cells and recruit mIgG on the cell surface. Ligating of Nb3B6 with C3Fab increased its serum half-life in mice almost 39-fold from 0.96 h to 37.67 h. Moreover, we demonstrated remarkable cytotoxicity of Nb3B6-C3Fab to CD70 positive tumor cells via C3Fab by immune effector cells. Conclusion: Our study demonstrates that IgBD fusion endows Nbs with the ability for endogenous IgG recruitment and half-life promotion. Linking IgBD to Nbs is an effective strategy to recovering immune effectors for tumor killing.


Subject(s)
Antibodies, Monoclonal , Neoplasms , Single-Domain Antibodies , Animals , Mice , Antibodies, Monoclonal/pharmacology , Escherichia coli , Immunoglobulin G/metabolism , Phagocytosis , Single-Domain Antibodies/pharmacology
7.
Opt Express ; 31(8): 13073-13083, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157453

ABSTRACT

Chaos generation from a novel single-loop dispersive optoelectronic oscillator (OEO) with a broadband chirped fiber Bragg grating (CFBG) is numerically and experimentally investigated. The CFBG has much broader bandwidth than the chaotic dynamics such that its dispersion effect rather than filtering effect dominates the reflection. The proposed dispersive OEO exhibits chaotic dynamics when sufficient feedback strength is guaranteed. Suppression of chaotic time-delay signature (TDS) is observed as the feedback strength increases. The TDS can be further suppressed as the amount of grating dispersion increases. Without compromising bandwidth performance, our proposed system extends the parameter space of chaos, enhances the robustness to modulator bias variation, and improves TDS suppression by at least five times comparing to the classical OEO. Experimental results qualitatively agree well with numerical simulations. In addition, the advantage of dispersive OEO is further verified by experimentally demonstrating random bit generation with tunable rate up to 160 Gbps.

8.
Sensors (Basel) ; 23(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050552

ABSTRACT

A multi-sensor medical-image fusion technique, which integrates useful information from different single-modal images of the same tissue and provides a fused image that is more comprehensive and objective than a single-source image, is becoming an increasingly important technique in clinical diagnosis and treatment planning. The salient information in medical images often visually describes the tissue. To effectively embed salient information in the fused image, a multi-sensor medical image fusion method is proposed based on an embedding bilateral filter in least squares and salient detection via a deformed smoothness constraint. First, source images are decomposed into base and detail layers using a bilateral filter in least squares. Then, the detail layers are treated as superpositions of salient regions and background information; a fusion rule for this layer based on the deformed smoothness constraint and guided filtering was designed to successfully conserve the salient structure and detail information of the source images. A base-layer fusion rule based on modified Laplace energy and local energy is proposed to preserve the energy information of these source images. The experimental results demonstrate that the proposed method outperformed nine state-of-the-art methods in both subjective and objective quality assessments on the Harvard Medical School dataset.

9.
Opt Lett ; 48(8): 2006-2009, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37058628

ABSTRACT

Photonic time-delay reservoir computing (TDRC) using a self-injection locked semiconductor laser under optical feedback from a narrowband apodized fiber Bragg grating (AFBG) is proposed and numerically demonstrated. The narrowband AFBG suppresses the laser's relaxation oscillation and provides self-injection locking in both the weak and strong feedback regimes. By contrast, conventional optical feedback provides locking only in the weak feedback regime. The TDRC based on self-injection locking is first evaluated by the computational ability and memory capacity, then benchmarked by the time series prediction and channel equalization. Good computing performances can be achieved using both the weak and strong feedback regimes. Interestingly, the strong feedback regime broadens the usable feedback strength range and improves robustness to feedback phase variations in the benchmark tests.

10.
Article in English | MEDLINE | ID: mdl-36790415

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) have been recognized as a potential health risk and are widespread in nature due to their intrinsic chemical stability and high recalcitrance to degradation. A taxonomic study was carried out on strain P9T, which was isolated from a PAH-degrading consortium, enriched from the mangrove sediment from Zhangzhou, PR China. The isolate was chemoheterotrophic, aerobic, Gram-stain-negative, short-rod shaped, and motile by one polar flagellum. Growth was observed at salinities from 0.5-6.0 % (optimum, 3 %), at pH 4-9 (optimum, pH 7) and at 10-41 °C (optimum, 25-30 °C). It did not synthesize bacteriochlorophyll a. Catalase and oxidase activities were positive. Acid was produced from starch, amygdalin, arbutin, cellobiose, d-fructose, maltose, d-mannitol, melezitose, melibiose, raffinose, d-ribose, sucrose, trehalose, d-xylose, aesculin ferric citrate, gentiobiose, glycogen, l-arabinose, l-rhamnose, methyl α-d-glucopyranoside, methyl ß-d-xylopyranoside, N-acetylglucosamine and salicin, and weakly positive for d-arabitol, d-galactose, lactose, turanose and glycerol. Phylogenetic analysis revealed that strain P9T fell within the clade comprising the type strains of Salipiger species and formed an independent cluster with Salipiger profundus, which was distinct from other members of the family Rhodobacteraceae. The 16S rRNA gene sequence comparisons showed that strain P9T was most closely related to Salipiger bermudensis HTCC 260T (96.7 %), and other species of the genus Salipiger (95.7-94.2 %). Strain P9T had the highest digital DNA-DNA hybridization value with S. profundus CGMCC 1.12377T (25.0 %) and the highest average nucleotide identity (ANIb and ANIm) values with S. profundus CGMCC 1.12377T(80.3 and 85.8 %, respectively). The sole respiratory quinone was quinone 10. The dominant fatty acids were C18 : 1 ω7c (61.4 %), C16 : 0 (17.5 %) and C19 : 0 ω8c cyclo (7.6 %). The G+C content of the chromosomal DNA was 65.8 mol%. In the polar lipid profile, phospholipid, phosphatidylglycerol, aminolipid, glycolipid and phosphatidylethanolamine were the major compounds. Based on the phenotypic and phylogenetic data, strain P9T represents a novel species of the genus Salipiger, for which the name Salipiger pentaromativorans sp. nov. is proposed. The type strain is P9T (=CCTCC AB 209290T=LMG 25701T=MCCC 1F01055T).


Subject(s)
Polycyclic Aromatic Hydrocarbons , Rhodobacteraceae , Fatty Acids/chemistry , Seawater/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition , Sequence Analysis, DNA , Phospholipids/chemistry , Quinones
11.
Anal Methods ; 15(7): 901-905, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36727559

ABSTRACT

Isobutyraldehyde (IBA) was detected in drug substance (DS) containing an amino acid group using a headspace-gas chromatography (HS-GC) method. High-performance liquid chromatography-mass-spectrometry (HPLC-MS) data from an HS vial confirmed that IBA was a degradant. The HS-GC method was modified to minimize IBA by keeping the HS oven temperature lower than 80 °C.


Subject(s)
Aldehydes , Gas Chromatography-Mass Spectrometry/methods , Aldehydes/analysis , Temperature , Solvents
12.
Free Radic Biol Med ; 199: 67-80, 2023 04.
Article in English | MEDLINE | ID: mdl-36805044

ABSTRACT

Intracerebral hemorrhage (ICH) induces high mortality and disability. Neuronal death is the principal factor to unfavourable prognosis in ICH. However, the mechanisms underlying this association remain unclear. In this study, we investigated the molecular mechanisms by which neuronal ferroptosis occurs after ICH and whether the use of corresponding modulators can inhibit neuronal death and improve early outcomes in a rat ICH model. Our findings indicated that Nox4 and TF/TfR were upregulated in the perihematomal tissues of ICH rats. Oxidative stress and iron overload induced by Nox4 and TF/TfR promoted neuronal ferroptosis post-ICH. In contrast, application of Nox4-siRNA and the deferoxamine (DFO) attenuated peroxidation and iron deposition in the hemorrhagic brain, alleviated neuronal ferroptosis, and improved sensorimotor function in ICH rats. Additionally, our findings indicated that the post-ICH neuronal reduced glutathione (GSH) depletion were not related to dysfunctional glutamine delivery in astrocytes but rather to downregulation of EAAT3 due to lipid peroxidation-induced dysfunction in the neuronal membrane. These findings indicate that ferroptosis is involved in neuronal death in model rats with collagenase-induced ICH. Oxidative stress and iron overload induced by Nox4 and TF/TfR exacerbate ferroptosis after ICH, while Nox4 downregulation and iron chelation exert neuroprotective effects. The present results highlight the cysteine importer EAAT3 as a potential biomarker of ferroptosis and provide insight into the neuronal death process that occurs following ICH, which may aid in the development of translational treatment strategies for ICH.


Subject(s)
Ferroptosis , Iron Overload , Animals , Rats , Cell Death , Cerebral Hemorrhage/genetics , Ferroptosis/genetics , Iron Overload/genetics , NADPH Oxidase 4/genetics , Oxidative Stress/physiology
13.
Eur J Pharm Sci ; 181: 106346, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36494000

ABSTRACT

Mini-tablets (MTs) have been utilized as an alternative to monolithic tablets due to their ease of use for pediatric populations, dose flexibility and tailoring of drug release profiles. Similar to monolithic tablets, MTs can develop film coat and internal core defects during manufacturing processes that may adversely affect their dissolution performance. The use of x-ray computed microtomography (XRCT) is well documented for monolithic tablets as a means of identifying internal defects, but applications to MTs have not been well studied. In this study, we have developed a workflow that analyzes reconstructed XRCT images of enteric-coated mini-tablets using deep learning convolutional neural networks. This algorithm was utilized to extract key physical features of individual MTs, such as micro-crack volume and enteric coat thickness. By performing dissolution studies on individual MTs, correlations were established based on the physical parameters obtained by XRCT and the dissolution performance, enabling prediction of dissolution performance utilizing non-destructive imaging data. This workflow provides insight into the physical variability of MT populations that are generated during manufacturing, enabling optimization of critical tableting and coating parameters to achieve the target dissolution criteria. Through this mechanistic understanding, quality is built into the final drug product through rational development of formulation and process parameters.


Subject(s)
Tomography, X-Ray Computed , Child , Humans , Solubility , Tablets , Tablets, Enteric-Coated , Drug Liberation
14.
J Biochem Mol Toxicol ; 37(3): e23274, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36536496

ABSTRACT

BACKGROUND: Circular RNA (circRNA) has been confirmed to be a key regulator for pancreatic cancer (PC) progression, but the role of circ_0000284 in PC development remains unclear. METHODS: Quantitative real-time PCR was used to measure the expression of circ_0000284, microRNA (miR)-1179, and rhophilin 2 (RHPN2). PC cell proliferation, metastasis, angiogenesis, and apoptosis were assessed by EdU assay, transwell assay, tube formation assay, and flow cytometry. Relative protein expression was determined by western blot analysis. The interaction between miR-1179 and circ_0000284 or RHPN2 was confirmed by dual-luciferase reporter assay and RNA pull-down assay. RESULTS: Circ_0000284 was significantly upregulated in PC tissues and cells, and its knockdown inhibited PC cell proliferation, migration, invasion, and angiogenesis while promoting apoptosis. MiR-1179 was downregulated in PC tissues and cells, and it could be sponged by circ_0000284. Moreover, the miR-1179 inhibitor reversed the regulation of circ_0000284 knockdown on PC cell progression. The highly expressed RHPN2 was found in PC tissues and cells, and it could be targeted by miR-1179. Also, circ_0000284 sponged miR-1179 to regulate RHPN2 expression. Overexpressed RHPN2 could reverse the regulation of circ_0000284 knockdown on PC cell progression. In addition, interference of circ_0000284 was discovered to repress PC tumor growth by regulating miR-1179/RHPN2.RHPN2. CONCLUSION: To sum up, our data confirmed that circ_0000284 facilitated PC malignant progression depending on the regulation of miR-1179/RHPN2 axis, suggesting that circ_0000284 might be a potential target for PC treatment.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Humans , Pancreas , Cell Proliferation , Adaptor Proteins, Signal Transducing , Pancreatic Neoplasms
15.
Anim Biotechnol ; 34(1): 1-7, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34097574

ABSTRACT

For its role in the mediation of myoblast proliferation, fibroblast growth factor receptor 1 (FGFR1) was considered a functional candidate gene for growth performance in Tibetan sheep. Via the polymerase chain reaction-restriction fragment length polymorphism (PCR-PFLP) approach, four single nucleotide polymorphisms (SNPs) including g.14752C > T (intron 1), g.45361A > G (intron 7), g.49400A > G (3'UTR region) and g.49587A > T (3'UTR region), were identified in 422 ewes. The association analysis demonstrated that individuals carrying the AA genotype of g.49400A > G had significantly greater withers height, length than those with GG genotype (p < 0.05). Individuals with genotype AA of g.49587A > T had significantly greater weight and chest circumference than those with genotype TT (p < 0.01). Additionally, the individuals with Hap1/1 diplotypes (CAAA-CAAA) were highly significantly associated with weight and chest circumference than Hap1/2 diplotypes (CAAA-CAAT) (p < 0.05). The quantitative real-time polymerase chain reaction (qPCR) analysis revealed that the FGFR1 was detectable expressed in muscle tissues within three different age stage. Remarkably higher mRNA expression was detected at fetal lamb stage as compared with adult ewes (p < 0.01). The outcome of this research confirmed that both g.49400A > G and g.49587A > T of FGFR1 were involved in growth-related traits, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 1 , Sheep, Domestic , Sheep/genetics , Animals , Female , Sheep, Domestic/genetics , Receptor, Fibroblast Growth Factor, Type 1/genetics , 3' Untranslated Regions , Phenotype , Mutation , Genotype , Polymorphism, Single Nucleotide
16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-986245

ABSTRACT

@#[摘 要] 目的:构建靶向CD70分子的重组免疫毒素,通过表达、纯化制备PE38与抗CD70纳米抗体重组蛋白,体外抗肿瘤实验探究重组蛋白是否对高表达CD70分子的阳性肿瘤细胞具有杀伤活性。方法:通过基因工程手段,将CD70纳米抗体Nb 2B3基因片段通过一个连接子与pET21a-PE38基因片段相连,获得重组表达载体pET21a-Nb 2B3-PE38并转入BL21(DE3)感受态细胞中进行表达、纯化与鉴定。用间接ELISA及FACS法检测Nb 2B3-PE38与CD70分子的结合活性,MTT法检测Nb 2B3-PE38对高表达CD70分子的肾透明细胞癌786-O细胞的体外杀伤活性,Annexin Ⅴ-FITC/PI双染法检测Nb 2B3-PE38对786-O细胞凋亡的影响。结果:成功构建抗CD70纳米抗体重组免疫毒素Nb 2B3-PE38,纯化获得纯度>90%的重组蛋白,SDS-PAGE及WB检测结果表明目的蛋白正确表达,分子量为56 000。纯化后的Nb 2B3-PE38能与重组CD70抗原及786-O细胞表面的CD70分子特异性结合;25 µg/mL Nb 2B3-PE38即对786-O细胞产生极显著的杀伤作用(P<0.001),并且促进786-O细胞的细胞凋亡(P<0.01),其杀伤效应强于阳性对照顺铂(P<0.01)。结论:成功制备了特异性靶向CD70分子的免疫毒素Nb 2B3-PE38,其能够有效杀伤786-O细胞并诱导细胞凋亡且效果强于顺铂。

17.
Int J Syst Evol Microbiol ; 72(11)2022 Nov.
Article in English | MEDLINE | ID: mdl-36367518

ABSTRACT

An aerobic denitrifying bacterium, designated as strain CPY4T, was isolated from activated sludge treating urban sewage under alternating aerobic/anaerobic conditions by an enrichment culture technique. Cells of strain CPY4T were Gram-stain-negative, aerobic, long rod-shaped, motile by means of single polar flagellum and capable of aerobic denitrification with citrate as the carbon source. Growth of strain CPY4T was observed at 10-45 °C (optimum, 30-35 °C), at pH 6.0-10.5 (optimum, pH 8.0-8.5) and in 0-5 % NaCl (optimum, 0-3 %; w/v). The 16S rRNA gene sequence of strain CPY4T showed the highest similarity to Zobellella denitrificans ZD1T (97.9 %), followed by Zobellella endophytica 59N8T (97.6 %), Zobellella aerophila JC2671T (97.2 %), Zobellella taiwanensis ZT1T (97.1 %) and Zobellella maritima 102-Py4T (96.3 %). Genome comparisons between CPY4T and other Zobellella species showed highest digital DNA-DNA hybridization with Z. denitrificans ZD1T (43.8 %) and highest average nucleotide identity (ANIb and ANIm) of genome nucleotide sequences with Z. denitrificans ZD1T(90.7 and 92 %, respectively). Phylogenetic analysis revealed that strain CPY4T fell within the clade comprising the type strains of Zobellella species and formed a phyletic line with them, which was distinct from other members of the family Aeromonadaceae. The sole respiratory ubiquinone was quinone 8. The predominant fatty acids (>10 % of the total fatty acids) of strain CPY4T were summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c), summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The genomic DNA G+C content was 62.7 mol %. In the polar lipid profile, diphosphatidylglycerol, phosphatidylglycerol, phosphatidyl ethanolamine, phospholipids and aminolipids were the major compounds. Based on the genotypic and phenotypic data, strain CPY4T represents a novel species of the genus Zobellella, for which the name Zobellella iuensis sp. nov. is proposed. The type strain is CPY4T (=JCM 34456T=CGMCC 1.18722T).


Subject(s)
Aeromonadaceae , Sewage/microbiology , RNA, Ribosomal, 16S/genetics , Phylogeny , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Sequence Analysis, DNA , Phospholipids/chemistry , Ubiquinone/chemistry
18.
Life (Basel) ; 12(10)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36295084

ABSTRACT

Millions of wastewater treatment plants (WWTPs) based on the activated sludge process have been established worldwide to help to purify wastewater. However, a vast amount of sludge is inevitably generated, and the cost of sludge disposal could reach over half of the total operation cost of a WWTP. Various sludge reduction techniques have been developed, including physicochemical, biological, and combinational methods. Micro-organisms that could reduce sludge by cryptic growth are vital to the biological approach. Currently, only limited functional bacteria have been isolated, and the lack of knowledge on the underlying mechanism hinders the technique development. Therefore, the present study is aimed at isolating sludge-reducing bacteria and optimizing the sludge reduction process through response surface methodology. Nineteen strains were obtained from sludge. The mix-cultures did not show a higher sludge reduction rate than the pure culture, which may be ascribed to the complicated interactions, such as competition and antagonistic effects. In total, 21.2% and 13.9% of total suspended and volatile suspended solids were reduced within 48 h after optimization. The three-dimensional excitation-emission matrix fluorescence spectrum and hydrolases test results revealed that the sludge reduction might be promoted by the strain mainly through hydrolysis via proteinase and amylase. The results obtained from the study demonstrate the potential of using micro-organisms for sludge reduction through cryptic growth.

19.
Acta Biochim Biophys Sin (Shanghai) ; 54(10): 1518-1527, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36239354

ABSTRACT

CD70 is overexpressed in a variety of solid and hematological tumors and plays a role in tumor proliferation and evasion of immune surveillance. Targeting and blocking its binding to the receptor CD27 have the potential to treat CD70-dependent tumors. To generate novel CD70 blocking agents, we screen a human CD70-immunized camel VHH phage display library and isolate two blocking nanobodies against human CD70 targeting different epitopes. Upon enrichment by three rounds of biopanning, two strategies are employed to identify CD70 blockers. One named affinity selection is used for detecting clones with CD70 binding by conventional PE-ELISA. However, no clone with a blocking effect is obtained from 188 enriched clones by this method. The alternative strategy named competitive selection is based on the inhibiting capacity of CD70-CD27 binding by enriched VHHs. By this method, two clones, Nb-2B3 and Nb-3B6, with strong blocking capacity are obtained from 20 enriched VHHs, suggesting the efficiency of this strategy. Furthermore, Nb-2B3 and Nb-3B6 specifically bind to CD70-positive SKOV3 and Raji cells at low concentrations. Meanwhile, Nb-2B3 has no competitive effect on the binding of Nb-3B6 to CD70, and vice versa, indicating that they target two different epitopes on CD70. Our data show that nanobodies Nb-2B3 and Nb-3B6 are potential attractive theranostic agents for CD70-expressing cancers.


Subject(s)
Neoplasms , Single-Domain Antibodies , Humans , Single-Domain Antibodies/pharmacology , Epitopes , Gene Library , Enzyme-Linked Immunosorbent Assay , CD27 Ligand
20.
Biosens Bioelectron ; 217: 114719, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36126554

ABSTRACT

Rapid and accurate monitoring of glucose, lactic acid, pyruvic acid, and 3-hydroxybutyric acid is essential in preventing, diagnosing, and treating diabetes, lactic acidosis and diabetic ketoacidosis. Herein, a novel sensing chip for multi-index determination of diabetes, lactic acidosis, and diabetic ketoacidosis was presented by integrating microfluidic device and photoelectrochemical (PEC) sensor. In order to block the interference from the reductive species in real samples, the PEC sensor was divided into a biocathode and a photoanode, which were installed separately in the upper and bottom layers of the device. The photoanodes were modified with ZnIn2S4 nanoflower as photosensitive material, while enzymes for catalyzing the analytes were immobilized on the biocathodes. The PEC chip displayed wide detection ranges with low detection limits of 0.035 µM, 0.34 µM, 3.3 µM and 0.035 µM for the four analytes (S/N = 3). The chip also demonstrated decent anti-interference capability and reliability in monitoring the four biomarkers in human serum. Furthermore, a household amperemeter was deployed to record the photocurrent signals, which helps to reduce the cost. By replacing the enzyme on the biocathode, the sensing chip could play a role in monitoring a broad range of species.


Subject(s)
Acidosis, Lactic , Biosensing Techniques , Diabetes Mellitus , Diabetic Ketoacidosis , 3-Hydroxybutyric Acid , Biomarkers , Diabetes Mellitus/diagnosis , Electrochemical Techniques , Glucose , Humans , Limit of Detection , Microfluidics , Pyruvic Acid , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...